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A B S T R A C T

Despite being a species with great potential for biodiesel production, little research has been done on the
breeding of Jatropha curcas, mainly with respect to its yield across harvests. Thus, the present study was carried
out to analyze longitudinal data via multiple-trait Best Linear Unbiased Prediction (BLUP) for the genetic im-
provement of Jatropha curcas. The experiment was set up as a randomized block design with two blocks and five
plants per plot. The seed yield of 730 individuals of 73 half-sib families was evaluated over six years. Variance
components and genetic parameters were estimated via Restricted Maximum Likelihood (REML). The Additive
Index was used for ranking and selection purposes. Genetic correlations of low to moderate magnitude were
observed between pairs of harvests. The Multiple-trait BLUP / Additive Index procedure allowed for the selection
of superior families based on the predicted genetic values, considering all the harvests. Therefore, it can be
efficiently applied in the breeding of Jatropha curcas.

1. Introduction

The search for sustainable fuels has become a frequent topic in
numerous world conferences. In this scenario, Jatropha curcas L. stands
out as one of the main species from which biodiesel can be produced by
virtue of its adaptability to different environments; its tolerance to
drought, which enable its cultivation in low-fertile and non-irrigated
soils (Laviola et al., 2017); and production life of more than 50 years
(Nithiyanantham et al., 2012). Moreover, it has a higher capacity to
transform oil into biodiesel compared with other species (Pu et al.,
2011).

Despite being a species with great potential for biodiesel produc-
tion, little research has been done on the breeding of Jatropha curcas.
Recently, studies have been undertaken with a view to selecting gen-
otypes using information of only one harvest (Junqueira et al., 2016);
using several harvests independently (Bhering et al., 2013); or based on
temporal stability and adaptability of genetic values (Alves et al.,
2018a, 2018b). However, because Jatropha curcas is a perennial species
that produces for many years, statistical methodologies that efficiently

evaluate longitudinal data are necessary to allow for a more accurate
genetic selection (Peixoto et al., 2016).

Longitudinal data analysis has a few peculiarities, as the many
harvests are correlated with each other and because there may be
heterogeneity of variances and covariances between them (Mrode,
2014). The interest in analyses of this sort of data usually lies in the
prediction of genetic values across all harvests as well as in the iden-
tification of a covariance structure over time (Resende et al., 2014). In
plant breeding, longitudinal data associated with harvests are usually
analyzed via repeatability models (Resende et al., 2014).

However, the multiple-trait Best Linear Unbiased Prediction (BLUP)
— also known as the model with an unstructured covariance matrix —
can be a very efficient alternative, because it uses all pieces of in-
formation simultaneously and treats repeated measures as different and
correlated traits, considering their heritabilities and genetic and re-
sidual correlations (Mrode, 2014; Resende et al., 2014). This covariance
structure is applied to all random factors of the statistical model such as
genotype effects, plot effects, and residual effects (Gilmour et al., 2004).
In this scenario, the present study proposes to analyze longitudinal data
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via multiple-trait Best Linear Unbiased Prediction (BLUP) for the ge-
netic improvement of Jatropha curcas.

2. Materials and methods

2.1. Experimental data

The experiment was implemented in November 2008 as a rando-
mized-block design with two blocks and five plants per plot that were
arranged in rows spaced 4m apart, with 2m spacing between plants.
The experiment was conducted in the experimental field of Embrapa
Cerrados, located in Planaltina, DF - Brazil (15°35′30″ S and 47°42′30″
W; 1007m asl). All management practices were based on Carels et al.
(2012). The experiment consisted of an evaluation of the performance
of 730 individuals of 73 half-sib families of Jatropha curcas. These in-
dividuals were evaluated for seed yield (kg plant−1) in six harvests
(2010–2015).

2.2. Statistical analysis

The Restricted Maximum Likelihood/Best Linear Unbiased
Prediction (REML/BLUP) procedure was adopted to estimate the var-
iance components and predict the genetic values, in accordance with
Patterson and Thompson (1971) and Henderson (1975).

The multiple-trait statistical model, associated with the evaluation
of genotypes in a randomized-block design with several plants per plot,
is given by the following equation:

= + + +y Xr Zf Wp e,

where y is the phenotypes vector; r is the vector of fixed effects of blocks
added to the overall mean; f is the vector of random effects of families,

∼ ∑ ⨂f N I(0, )a ; p is the vector of random error effects between plots,
∼ ∑ ⨂p N I(0, )p ; e is the vector of random residual effects within

plots, ∼ ∑ ⨂e N I(0, )e ; and X, Z, and W represent the incidence ma-
trices for the said effects. ∑a is a covariance matrix of random genetic
effects of families; ∑p is a covariance matrix of random error effects
between plots; ∑e is a covariance matrix of random residual effects
within plots; I is an identity matrix of order appropriate to the re-
spective random effect; and ⨂ denotes the Kronocker product. In ad-
dition, ∑a, ∑p, and ∑e are assumed unstructured covariance structures
(US).

The additive genetic variance between family means (σa
2) was given

by the following expression (Resende, 2015):
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where σg
2 is the estimate of the genetic variance between family means.

The heritability between family means (hg
2) was given by the fol-

lowing expression (Resende, 2015):
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where σplot
2 is the estimate of the variance between plots; σres

2 is the es-
timate of the residual variance within plots; r is the number of blocks;
and n is the number of plants per plot.

The standard errors of the estimates of variance components and of
the genetic parameters were obtained by the mixed model output and
post-processing "pin" function of ASReml software.

Genetic correlations (Pearson’s correlation) between pairs of har-
vests (ri j, ) were obtained based on the following expression:
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where σ̂i j, is the genetic covariance estimated between the family means
for the pair of harvests i and j; σ̂i

2 is the genetic variance estimated

between family means for harvest i; and σ̂ j
2 is the genetic variance es-

timated between family means for harvest j. The genetic covariances
were obtained directly by the mixed model output.

The Additive Index (Resende, 2007), used to identify superior fa-
milies to be selected in the Jatropha curcas breeding program, is given
by the following expression:

∑=
+

=

AI w
u f

σ
( )

k
h

h
h kh

h1

6

where wh is the weight assigned for harvest h; +u fh kh is the overall
mean for harvest h added to the predicted genetic value of family k at
harvest h; and σh is the standard deviation for +u fh kh. For the Additive
Index, weights equal to u u/h , where u is the overall mean, were as-
signed, and the selection direction was "higher". The gain predicted
with the selection was obtained directly by the Additive Index output.

Statistical analyses were performed using ASReml 4.1 (Gilmour
et al., 2015), Selegen REML/BLUP (Resende, 2016), and R (R Core
Team, 2018) software.

3. Results

The standard errors of the estimates of the variance components
revealed that all the random effects of the statistical model are statis-
tically significant (i.e., they differ from zero) (Table 1). An increase was
observed in the magnitude of genetic variance between family means
and, consequently, in additive genetic variance between family means
throughout the harvests, except for that of 2013. On the other hand,
heritability between family means did not follow any pattern, ranging
from 0.33 to 0.71 (2013 and 2014 harvests, respectively) (Table 1).

Genetic correlations between pairs of harvests ranged from 0.11
(2011 and 2013) to 0.80 (2014 and 2015) (Fig. 1), and 60% of these
correlations were lower than 0.6. Overall, the highest genetic correla-
tions were obtained for the last pairs of harvests.

Predicted genetic values in each harvest, Additive Index, and pre-
dicted selection gain across all harvests for the 73 half-sib families of
Jatropha curcas are shown in the supplementary material - Table S1. By
adopting a selection intensity of 27%, according to Additive Index, the
20 selected families were 41, 10, 15, 37, 36, 6, 54, 16, 9, 11, 72, 56, 18,
65, 34, 67, 73, 53, 70, and 39 (Fig. 2), and the predicted selection gain
across all harvests was 12%.

Table 1
Estimates of variance components and genetic parameters and their respective
standard error, between parenthesis, for the seed yield trait, evaluated in 730
individuals of 73 half-sib families of Jatropha curcas in six harvests
(2010–2015).

Harvest σg
2 a σa

2 b σplot
2 c σres

2 d σphen
2 e hg

2 f

2010 0.0043 0.0171 0.0036 0.0056 0.0135 0.65
(0.0012) (0.0047) (0.0008) (0.0003) (0.0012) (0.08)

2011 0.0099 0.0397 0.0284 0.0314 0.0697 0.36
(0.0055) (0.0218) (0.0057) (0.0018) (0.0056) (0.15)

2012 0.1017 0.4069 0.1070 0.1427 0.3514 0.60
(0.0308) (0.1234) (0.0228) (0.0084) (0.0313) (0.10)

2013 0.0693 0.2772 0.2512 0.1372 0.4577 0.33
(0.0428) (0.1712) (0.0457) (0.0081) (0.0429) (0.16)

2014 0.2562 1.0249 0.1696 0.2012 0.6271 0.71
(0.0637) (0.2548) (0.0356) (0.0119) (0.0638) (0.07)

2015 0.2922 1.1689 0.2235 0.3099 0.8257 0.67
(0.0772) (0.3089) (0.0496) (0.0186) (0.0785) (0.08)

a genetic variance between family means.
b additive genetic variance between family means.
c variance between plots.
d residual variance within plots.
e phenotypic variance, and.
f heritability between family means.
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4. Discussion

BLUP assumes that variance components are known (Henderson,
1975). However, in practice, variance components are unknown and
should thus be estimated in the most reliable way possible so that es-
timates can properly replace the parameters. In this case, the standard
procedure for estimating variance components, under the approach of
linear mixed models, is REML (Patterson and Thompson, 1971).
Therefore, the genetic evaluation consists of using these methodologies
together — the so-called REML/BLUP or mixed model methodology
(Resende et al., 2014).

The main advantages of using the mixed model methodology are
that it allows for the incorporation of kinship information; comparison
of individuals or varieties over time and space; correction of environ-
mental effects, simultaneous estimation of variance components and
prediction of genetic values; and dealing with complex data structures.
Moreover, the mixed model methodology can be applied to unbalanced
data and non-orthogonal designs (Mrode, 2014; Resende, 2016).

In the identification and selection of superior families, genetic
variance between families is characterized as one of the main compo-
nents to quantify the breeding potential of the genotypes under study.
Additionally, this parameter makes it possible to direct the selection

Fig. 1. Genetic correlations between pairs of harvests for the seed yield trait, evaluated in 730 individuals of 73 half-sib families of Jatropha curcas, in six harvests
(2010–2015).

Fig. 2. Ranking of Jatropha curcas families and selected families by the Additive Index.
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strategy to be used, increasing the frequency of favorable alleles (Kerr,
1998).

The heritable proportion of total variability is named ‘heritability’
(Falconer and Mackay, 1996). This is a measure of genetic influence
that informs that part of the population variation in a phenotype may
be attributed to the variation in the genotype, allowing for estimates
such as the genetic gain expected from selection (Allard, 1999). Ac-
cording to a scale proposed by Resende (2015), the heritabilities of the
2010, 2012, 2014, and 2015 harvests were characterized as high
magnitude, whereas those of the 2011 and 2013 harvests were classi-
fied as moderate magnitude. These heritability estimates indicate a
moderate to high correlation between the genotype and the phenotype,
constituting a favorable scenario for the selection of families.

In the breeding of perennial plants, the number of measurements
taken typically varies from three to six, since a higher number of har-
vests would compromise the efficiency of breeding programs per time
unit (Resende, 2015). Laviola et al. (2013) stated that the efficiency of
early selection in Jatropha curcas is small and that a minimum of 4 and
7 measurements are required to achieve reliability levels of 70 and
80%, respectively, in predicting the genetic values.

Repeatability models (the most simple and parsimonious) are very
efficient when the genetic correlation between successive harvests is
high (above 0.80) and are greatly advantageous because few para-
meters are to be estimated (Resende et al., 2014). However, in the
current study, most genetic correlations between harvests were lower
than 0.80, indicating that more complex models must be used. Thus, the
multiple-trait BLUP is a more suitable strategy for the analysis of
longitudinal data in Jatropha curcas. The predicted selection gain, with
the recombination of the selected families, is of high magnitude and,
therefore, confirms the efficiency of this procedure in the genetic im-
provement of Jatropha curcas.

Imai et al. (2016) applied multiple-trait BLUP in citrus and de-
monstrated the usefulness of the method in predicting genetic values
when the information of kinship among genotypes is known and in the
presence of unbalanced data. The authors recommended multiple-trait
BLUP as a tool to select genotypes. Greater accuracy and efficiency of
multiple-trait BLUP were also reported by Costa et al. (2002) in rubber
tree (Hevea brasiliensis) breeding, by Kerr (1998) in the genetic selection
of open and controlled cross-pollination cultivars in forestry breeding,
and by Alves et al., (2018a, 2018b) in the genetic selection of Eu-
calyptus.

Few studies exist in the literature evaluating longitudinal data in
Jatropha curcas. Thus, the results obtained in the present study using the
multiple-trait BLUP / Additive Index procedure contribute to filling a
gap in the breeding of Jatropha curcas. In addition, this procedure can
be used for genetic selection in other species. In future research, mul-
tiple-trait BLUP should be considered in association with genomic
prediction analysis to improve accuracy and reduce the cycle time in
the genetic improvement programs of Jatropha curcas.

5. Conclusion

Genetic correlations of low to moderate magnitude were observed
between pairs of harvests.

The Multiple-trait BLUP / Additive Index procedure allowed for the
selection of superior families based on the predicted genetic values,
considering all the harvests. Therefore, it can be efficiently applied in
the breeding of Jatropha curcas.
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